Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
International Journal of Stem Cells ; : 125-129, 2012.
Article in English | WPRIM | ID: wpr-69145

ABSTRACT

BACKGROUND AND OBJECTIVES: SIRT1, a histone diacetylase, modify transactivation function of various transcription factor including p53 and NF-kappaB. p53 and NF-kappaB is involved in in vitro differentiation of mouse embryonic stem cells (mESC) into mouse embryoid body (mEB). These suggest that SIRT1 might affect in vitro differentiation of mESC into mEB by regulation of p53 and NF-kappaB. METHODS AND RESULTS: In this study we analyzed the effect of SIRT1 in in vitro differentiation of mESC into mEB using wild and SIRT1 knockout mESC. To examine SIRT1-specific gene in mESC, this study conducted microarray-based differential gene expression analysis between wild and SIRT1 knockout mESC. Comparing their gene expression patterns, this study determined a list of genes regulated by SIRT1. cDNA microarray data-set analysis revealed that genes associated with transcription and signal transduction are significantly modified in SIRT1 knockout mESC. cDNA microarray data-set analysis between mESC and EB in wild and SIRT1 showed that SIRT1 inhibits p53 signaling pathway but not affect NF-kappaB signaling pathway. CONCLUSIONS: This study suggests that SIRT1 modify mESC differentiation by regulation of p53 transcriptional activity.


Subject(s)
Animals , Mice , Embryoid Bodies , Embryonic Stem Cells , Gene Expression , Histones , NF-kappa B , Oligonucleotide Array Sequence Analysis , Signal Transduction , Transcription Factors , Transcriptional Activation
2.
Experimental & Molecular Medicine ; : 673-678, 2007.
Article in English | WPRIM | ID: wpr-170419

ABSTRACT

Lipoprotein plays a role in the host defense against bacterial infection, and its serum level has been demonstrated to be an important prognosis factor of survival. We have previously demonstrated that LDL directly inactivates the hemolytic activity of Vibrio vulnificus cytolysin (VVC) in vitro. The object of this study was therefore to examine whether the LDL-mediated inactivation of VVC leads to protection against lethal infection of V. vulnificus in vivo, using wild and VVC-deficient V. vulnificus strains. Unexpectedly, we found that LDL protects mouse lethality induced by VVC-deficient as well as wild V. vulnificus strain. We also demonstrated that LDL blocks V. vulnificus LPS-induced lethality in mice. These results suggest that LDL preferentially act on endotoxin rather than exotoxin in the protection against V. vulnificus-induced mice lethality.


Subject(s)
Animals , Female , Humans , Mice , Disease Models, Animal , Lipopolysaccharides/antagonists & inhibitors , Lipoproteins, LDL/pharmacology , Mice, Inbred ICR , Perforin/antagonists & inhibitors , Vibrio Infections/prevention & control , Vibrio vulnificus/drug effects , Virulence/drug effects
3.
Experimental & Molecular Medicine ; : 121-127, 2007.
Article in English | WPRIM | ID: wpr-37548

ABSTRACT

TNF-alpha plays a variety of biological functions such as apoptosis, inflammation and immunity. PTEN also has various cellular function including cell growth, proliferation, migration and differentiation. Thus, possible relationships between the two molecules are suggested. TNF-alpha has been known to downregulate PTEN via NF-kappaB pathway in the human colon cell line, HT-29. However, here we show the opposite finding that TNF-alpha upregulates PTEN via activation of NF-kappaB in human leukemic cells. TNF-alpha increased PTEN expression at HL-60 cells in a time- and dose-dependent manner, but the response was abolished by disruption of NF-kappaB with p65 anisense phosphorothioate oligonucleotide or pyrrolidine dithiocarbamate. We found that TNF-alpha activated the NF-kappaB pathways, evidenced by the translocation of p65 to the nucleus in TNF-alpha-treated cells. We conclude that TNF-alpha induces upregulation of PTEN expression through NF-kappaB activation in human leukemic cells.


Subject(s)
Humans , Up-Regulation/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Signal Transduction/drug effects , PTEN Phosphohydrolase/genetics , NF-kappa B/genetics , Leukemia/genetics , Gene Expression , Cell Line, Tumor
4.
Journal of Bacteriology and Virology ; : 293-300, 2003.
Article in Korean | WPRIM | ID: wpr-128194

ABSTRACT

ADP-ribosyltransferase (ADPRT) catalyzes the reaction in which the ADP-ribose moiety of beta-NAD+ is transferred to specific amino acid residues in target proteins. The ADPRT of Mycobacterium smegmatis has been known to inactivate rifampin through ADP-ribosylation. However, the enzymatic characteristics and functions of the enzyme have not been elucidated yet. In this study, the ADPRT-glutathione S-transferase (GST) fusion protein was expressed in Escherichia coli and enzymatic characteristics of the fusion protein were investigated. ADPRT-GST fusion protein was an ADPribosyltransferase that had no NAD glycohydrolase activity. ADPRT-GST fusion protein showed no self-inactivation phenomenon that is a universal nature for all NAD glycohydrolases and is important in regulating its activity. ADPRT activity of the enzyme was decreased by novobiocin and isonicotinic acid hydrazide. These results suggest that Mycobacterium smegmatis ADPRT could be regulated by a different way from other NADases and involved in bacterial physiological process through a post-translational modification of cytosolic proteins.


Subject(s)
Adenosine Diphosphate Ribose , ADP Ribose Transferases , Cytosol , Escherichia coli , Isoniazid , Mycobacterium smegmatis , Mycobacterium , NAD+ Nucleosidase , Novobiocin , Physiological Phenomena , Protein Processing, Post-Translational , Rifampin
SELECTION OF CITATIONS
SEARCH DETAIL